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SUMMARY

Recent developments in semantic theory, such as the work of Labov (1973)
and Lakoff (1973), have brought into question the assumption that meanings are
precise. It has been proposed that the meanings of all terms are to a lesser or greater
degree vague, such that, the boundary of the application of a term is never a
point but a region where the term gradually moves from being applicable to
nonapplicable,

Developments in fuzzy set theory have made it possible to offer a formal treat-
ment of vagueness of natural language concepts. In this article, the proposition
that natural language concepts are represented as fuzzy sets of meaning compo-
nents and that language operators—adverbs, negative markers, and adjectives—
can be considered as operators on fuzzy sets was assessed empirically. In a series
of experiments, we explored the application of fuzzy set theory to the meaning
of phrases such as very small, sort of large, and so on. '

In Experiment 1, subjects judged the applicability of the set of phrases to a .
set of squares of varying size. The results indicated that the group interpretation
of the phrases can be characterized within the framework of fuzzy set theory.
Similar results were obtained in Experiment 2, where each subject’s responses
were analyzed individually. Although the responses of the subjects, in general,
could be interpreted in terms of fuzzy logical operations, one subject responded in
a more idiomatic style,

Experiments 3 and 4 were attempts to influence the logical-idiomatic distinction
in interpretation by (a) varying the presentation mode of the phrases and by (b)
giving subjects only a single phrase to judge.

Overall, the results were consistent with the hypothesis that natural language
concepts and operators can be described more completely and more precisely using
the framework of fuzzy set theory.

Picture a conversation between a mother
and her 5-year-old son. The son asks the
mother if he might have some jelly beans
from the bowl on the table. The mother
replies that he may take a few, and he does
just that. It is a perfectly normal conversa-
tion until one stops and considers how
many a few are. The mother obviously
knows what is meant by the term a few.
The information was understood by her
son because he responded correctly to the
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mother’s statement. If the son had been
asked directly how many constitute e few,
he probably would have hesitated for a
moment and then responded ‘‘three” (or
“four,” or ‘““five,”” and so on). Pose the
same question to the mother, and the odds
are that she would have responded with
not too different a number. The number of
beans taken might have differed from what
either person might have replied, but the
actual number was probably an acceptable



FUZZY SET APPROACH IN NATURAL LANGUAGE

definition from the mother’s point of view.,
If it were not, the son certainly would
have heard about it!

This scene demonstrates the transmission
of some vague, quantitative information
between two people. But actually, when
one stops and considers, most of the
quantitative information that one receives
during the course of a day is of just this
nature. A house may be gquite large; a girl
may be sort of short; a man may be #not
very old. Not only do people understand
such statements, they also have the ability
to operate upon and manipulate these
vague concepts.

Recently, there has been considerable
interest on the part of linguists and com-
puter scientists in just such problems as
the role of vagueness in language and the
quantification of meaning. Much of this
interest has been the result of the develop-
ment of fuzzy set theory, a generalization
of the traditional theory of sets. A major
feature of fuzzy set theory is that a quanti-
tatively specifiable system can contain
linguistic variables in addition to numeric
variables, These linguistic variables can be
manipulated and operated upon in much
the same way as numeric variables in
nonfuzzy systems. .

This new way of dealing with complex
systems appears quite promising in terms
of the specification of complex behavioral
processes, such as the measurement of
word meaning or the description of reason-
ing processes in everyday situations. In
this article, we explore the possibilities of
developing a treatment of (a) natural
language concepts as fuzzy sets and (b)
modifiers as operators on fuzzy sets.
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Quantification of Meaning

One of the first attempts at the quanti-
fication of meaning was made by Mosier
(1941). Mosier hypothesized that the mean-
ing of a word may be considered as con-
taining two components: (a) a constant
component reflecting the overall meaning
value along a continuum and (b) a variable
component representing the variation in
the meaning of the word due to context,
speaker, and the like, He defined the
meaning (M) of a word as:

M=x+4+1714+c¢,

where x equals the constant component
over people and context, ¢ equals the
variation in meaning due to the individual,
and ¢ equals the variation in meaning due
to the context.

According to this theory of word mean-
ing, any one of the components could be.
zero for certain words, and for ambiguous
words, x could have multiple values. In
addition, there is an assumption of a
unidimensional continuum along which
every word must fall. The model also pre-
dicts, for example, that context effects will
be independent of the word used and the
individual involved. Although these and
other simplifications reduce the model's
explanatory and predictive power con-
siderably, it was probably the first signif-
icant attempt made to quantify meaning.

More interesting than Mosier’s (1941)
theoretical formulations are his empirical
investigations in the same article. He had
subjects rate a list of evaluative adjec-
tives (e.g., unsatisfactory, excellent) along
a favorable-neutral-unfavorable con-
tinuum. He then scaled the responses by
the method of successive intervals. The
scale values for each word were interpreted
as the constant component of the meaning
of the word, while the spread of the dis-
tribution (i.e., the vagueness) was inter-
preted as ambiguity, or the variable com-
ponent. The data tended to support his
model in that it was possible to assign each
word to a scale value along a unidimensional
continuum, and the variation in meaning
about this scale value was normally dis-
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tributed. (These results were later sup-
ported by Jones and Thurstone, 1955, for
a set of preference words and phrases.)

Mosier’s subjects also rated a subset of
the adjectives paired with adverbial modi-
fiers, or intensifiers (e.g., very, extremely).
An analysis of these data showed that the
addition of an intensifier caused a shift in
the meaning of the base word away from
the neutral point toward the extreme.
This finding that adverbs tended to cause
a shift in the scale values served as the basis
for a later study on the influence of adverbs
by CIiff (1959),

Mosier had shown that the meaning of
an evaluative adjective could be repre-
sented as a point along a unidimensional
continuum reflecting favorableness. Osgood
and his colleagues (Osgood, 1952; Osgood,
Suci, & Tannebaum, 1957) felt that it was
possible to specify the meaning of a wider
range of words by rating the words on a
judiciously chosen set of scales. These
scales were combined to form the semantic
differential. Using this procedure, a subject
is presented with a word (e.g., quicksand),
which he characterizes by rating it along a
number of antonymous scales, such as
clean—dirty, fast-slow, and serious—hu-
morous. The resulting profile is considered
to be a multidimensional representation of
the meaning of the word. Osgood’s (1957)
factor analysis of the various scales of the
semantic differential yielded three main
factors, which could be called poiency,
activity, and evaluation.

According to Osgood (1957), the simi-
larity between two words (or between the
same word for different populations) is
interpreted as the Euclidean distance be-
tween corresponding profiles. Using this
definition of the distance between con-
cepts, Rowan (Note 1) had subjects rate a
list of words (e.g., sleep, hero, gentleness)
using the semantic differential and the
method of triads. The distances between
word pairs obtained from a multidimen-
sional scaling of the triad data correlated
highly with the distances from the semantic
differential. In addition, the first two di-
mensions from the multidimensional scaling
could be interpreted as evaluation and po-
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tency/activity, the major factors derived
from the semantic differential,

In the Mosier (1941) and the Jones and
Thurstone (1955) studies, the rating scale
(unfavorable—neutral-favorable) could be
considered to capture a- dimension of the
meaning of the terms used. Thus, the words
were rated according to the relative value
of the corresponding denotative, or ex-
tensive, component. These ratings can be
interpreted as the meaning of the words to
the extent that both share a similar quanti-
tative interpretation in the same context.
Similarly, the semantic differential seems
to demonstrate that subjects have the
ability to rate the words in such a manner
that overall differences between words are
reflected in differential scale values. The
semantic differential, however, does not
demonstrate that the scale values-reflect in
any way the overall meaning of a word.
Subjects may have the_ability to rate a
word such as moon as having a value on a
kind—cruel scale. Even if this rating re-
flects a connotative property of the word,
connotation is but one aspect of the mean-
ing of the word. However, most scales on
the semantic differential appear to reflect
such connotative components. To suggest
that word meaning can be uniquely speci-
fied by any number of such (nonorthogonal)
scales implies that these scales represent
all possible qualitative components in
meaning—connotative and denotative. It
has not been demonstrated that the
semantic differential represents the full
meaning of words in any comprehensive
manner. Whether such a’ theory could ever
adequately represent meaning is unclear.

The above studies have all represented
meaning as a point along one or more
rating scales. Mosier (1941) showed that
the meaning of evaluative adjectives could
be represented by scale values. How then
might adverbs be characterized? Cliff
(1959), extending Mosier’s findings, pro-
posed a formal model where adverbs func-
tioned as multiplicative constants. If the
scale value of the jth adjective is s;, then
the value of an adverb-adjective combina-
tion is represented as:

x4 = ¢i5; + K,
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where xi; equals the obtained scale value of
the 7th adverb in combination with the jth
adjective, ¢; equals the multiplying value
of the ¢th adverb, s;, equals the psycho-
logical scale position of the jth adjective,
and K equals the difference between the
arbitrary zero point of the obtained scale
values and the psychological zero point
of the scale.

To test the model, Cliff had subjects
rate a set of adjective—adverb combinations
(e.g., extremely lovable) along a favorable—
unfavorable continuum, as in the Mosier
study. Over all combinations of 10 adverbs
and 15 adjectives, the predictions of the
model were extremely accurate. Values of
¢; and s; were completely independent.
The only deviation from the model was
that the value of K appeared to vary
slightly as a function of the adjective
employed. Overall, the hypothesis that
adverbs operate as multipliers was clearly
confirmed. The results explain why com-
binations such as unusually average appear
so awkward: The scale value of average is
approximately zero, so multiplying zero
by any finite value will leave a product of
zero—the adverb is superfluous.

Quantification of Vagueness

An underlying assumption in the work
on meaning quantification has been that the
meanings of words can be specified as points
along a scale. The variability about the
scale value is attributable to the statistical
nature of the system. Recent developments
in semantic theory, such as the work of
Labov (1973) and Lakoff (1973), have
brought into question the assumption that
meanings are' precise. Instead, it has been
proposed that natural language terms are
to a lesser or greater degree inherently
vague, such that, the boundary of a term
is never a point but a region where the term
gradually moves from being applicable to
nonapplicable. Though this question of the
inherent vagueness of language has only
recently become of concern to psycholo-
gists, it has occupied the attention of
philosophers since the time of the Greeks,
who posed the question of vagueness in the
form of the paradoxes of sorites (the heap)
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and falakros (the bald man). The latter
paradox might take the form: How many
hairs must be plucked from a man’s head
before he is considered to be bald? And
given that there occurs a transition from
being not bald to being bald, where is the
one strand of hair that determines the
transition, that is, where does one draw
the line?

This paradox raises obvious difficulties
for the law of the excluded middle: It
appears unreasonable to assume that for
a concept such as baldness every element
of the universe is either a clear member of
the set or a clear member of the comple-
meunt of the set. The problem does not exist
for artificial concepts with sharply defined
boundaries, but appears unsolvable for
vague, natural language concepts.

But what is a vague concept, and can it
be specified ? This was a rather productive
area of research in philosophy during the
early part of the twentieth century (e.g.,
Black, 1937; Copilowish, 1939; Hempel,
1939; Peirce, 1902; Russell, 1923; see also
Black, 1963; Korner, 1957; Labov, 1973;
Schmidt, 1974). Russell (1923) argued that
the world is neither vague nor precise: It is
what it is. Vagueness (and its complement,
precision) are characteristics that can only
belong to a symbolic representation, such
as language. He further argued that a
representation is vague when there exists
a one-to-many relationship between the
representing system and the system being
represented. )

Black (1937) agreed that the problem of
vagueness is a property of natural language,
but he faulted Russell for confounding
vagueness and generality (p. 432, Note 12).
Black differentiated these two terms from
a third, ambiguity. Generality is what
Russell described as vagueness, that is, a
one-to-many relationship between a symbol
and the items that the symbol represents,
Ambiguity is the state of affairs where the
same phonetic form has a finite number of
alternative meanings. The vagueness of a
symbol, however, will not be found as the
result of a one-to-many relation nor a
number of alternative meanings. Black
reasoned that vagueness is a feature of the
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Ficure 1. Hypothetical consistency profile.

boundary of a symbol's extension, not of
the symbol itself. No matter how closely
one looks or accurately one measures, the
vagueness remains,

Peirce (1902) defined vagueness in a
similar manner: ‘A proposition is vague
when there are possible states of things
concerning which it is intrinsically un-
certain whether, had they been contem-
plated by the speaker, he would have
regarded them as excluded or allowed by
the proposition” (p. 748). There are some
objects that a group of speakers of a
language would definitely consider to be
chairs; others that would never be called
chairs. However, there will always be some
objects that tend to straddle the boundary;
no matter how closely one examines them,
these objects cannot be classified as clearly
belonging or not belonging to the category
in question. It appears then that vagueness
enters in the process of mapping a linguistic
term onto a universe. That is, what is vague
is the use of the linguistic term. (The term
natural language concept thus refers to the
result of this mapping operation, while
Uinguistic term refers to the verbal label
applied to the particular mapping. However,
throughout the present article these two
labels are used interchangeably to refer to
both a term and its application.)

Black (1937), using what he termed a
‘“consistency profile,” first attempted a
quantitative description of vagueness as
defined by Peirce (1902). He hypothesized
that while the vagueness of a word implies
variability in the application of a term by
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a group of language users, the variations
should be specifiable and systematic. If
they are not, it would be impossible to
distinguish between terms. He defined the
consistency of application of a term, T,
to an element, s, of a set, S (i.e., S = {s}),
asin;

C(T,s) = lim
M~ o
N—®

M
N

where M equals the number of judgments
that T applies to 5, and N equals the number
of judgments that not T" applies to s. The
consistency profile was then defined as the
function C(T, s) over the domain of ap-
plicability, S. Figure 1 depicts a typical
example, where it can be seen that the most
doubtful cases correspond to C(T', s) = 1.0.
This profile, then, was used to define the
vagueness of a term by taking the slope of
the curve from Point b to Point c (see
Figure 1) as an index of vagueness.

In the same article, Black put forth
alternative formulations for describing the
vagueness of a term. He redefined the con-
sistency of application as T'(s, C). Using this .
latter notation, a term, T, will be said to
apply to an item, s, of a series, .S, with a
consistency, C. The term not T will then
apply with a consistency, 1/C. Thus, the
law of the excluded middle can be replaced
by a reciprocal relation where the product
of the applicability of a term and its
complement is always unity.

Attacking the same problem of vague-
ness in language, Hempel: (1939) redefined
the consistency of application of a term,
T, to an object, s, as:

. M
CTs) = lim o w
N — ®
where M and N are as defined above. As a
consequence, the range of C is restricted to
the closed interval 0 to 1, and the ‘“‘doubt-
ful”” cases take on values of about 1/2. (In
a recent study of word boundaries, Labov,
1973, implicitly used just this type of
formulation to describe the manner in
which the form of objects and context,
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interact to influence the extension of word
boundaries.)

Hempel argued that Black’s technique of
specifying the vagueness of a term as the
slope of the borderline region was inade-
quate, since the scale on the abscissa was
arbitrary. Hempel reasoned, using his
formulation, that the greater the vagueness
in a term, the more objects there would be
for which C(T, s) takes on values around
1/2. The precision (pr) of a term then
could be formalized as:

M=

4
pr =5 T [C(T, s = 4T,

=
fl

1

and the vagueness (vg) as:
vg = 1 — pr.

Specifying the vagueness of a term in this
manner, independent of the slope of the
consistency profile, avoids another problem
encountered by Black (1937). As Figure 1
shows, there are two regions of certainty
(@ — b and ¢ — d) and a region connecting
these, which has been called the border-
line region, or fringe. Black specified the
vagueness of a term as the slope of the
fringe. But what delimits the fringe area?
Are there precise points at which the un-
certainty begins or ends (as depicted in
Figure 1)? One seems drawn to the con-
clusion that the extent of the boundaries
of a term’s application seems to fade in and
out in an almost imperceptible manner.
There is a smooth, continuous transition
from applicability to uncertainty to non-
applicability, The entire extension of the
term must then be considered to be vague,
for the boundary extends (asymptotically)
along the entire continuum.

The above discussion of the presence of
vagueness in natural language argues
against the Thurstonian model of meaning
as put forward by Mosier (1941) and Cliff
(1959). Such a theory implies that natural
language concepts are precise and thus can
be represented as points along a continuum.
The observation that concepts form dis-
tributions is explained in terms of the
statistical nature of the system. But if one
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accepts the theoretical position that natural
language concepts are inherently vague,
then the point concept becomes an in-
appropriate theoretical construct. Not only
can a vague concept refer to a range, but
also the variability is an integral part of
the meaning of the concept.

Theory of Fuzzy Sets

Computer scientists and systems engi-
neers have long recognized that people can
understand and operate upon vague,
natural language concepts. Computers,
however, are extremely rigid and precise
information-processing systems. This in-
herent rigidity severely limits a computer’s
ability to abstract and generalize funda-
mental conceptual functions. Recently,
Zadeh (1965, 1973) and others (e.g.,
Goguen, 1967, 1969; Santos, 1970; Le-
Faivre, Note 2) have developed quantita-
tive techniques for dealing with vagueness
in complex systems. The techniques are
based on fuzzy set theory, a generalization
of the traditional theory of sets.

The unique feature of fuzzy logic is that
it allows complex systems to contain both
numeric and linguistic variables, where a
linguistic variable is defined as a label of a
fuzzy set. For example, the linguistic
variable age may take on values of very
young, rather young, young, middle age, not
very old, and so on, in addition to a range of
numeric values. The assumption underlying
these fuzzy sets is that the transition from
membership to nonmembership is seldom
a step function; rather, there is a gradual
but specifiable change from membership
to nonmembership. In nonfuzzy set theory
a membership (characteristic) function
specifies which elements are members of
the set (i.e., for which elements x € X hasa
truth value of 1). In fuzzy systems, the
grade of membership and the corresponding
truth value of the proposition ¥ & X may
take on any value in the closed real interval
from .0 to 1.0.

Fuzziness is distinctly different from un-
certainty as measured by the probability
of an event. The uncertainty of a coin toss
resulting in a head has a certain probability
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associated with it. No vagueness is involved
—only lack of knowledge concerning an
event occurring in the future. Once this
knowledge becomes available, the state of
affairs is completely determined. Referring
back to the problem of falakros (the bald
man), the concept baldness can be con-
sidered to be fuzzy. Unlike a coin toss, no
matter how closely one measures or ex-
amines, the concept will apply more to
some elements of the universe (men) than
to others, No amount of information can
make the boundary between dald and not
bald free of imprecision.

To aid in discussions later in this article,
it might be helpful at this point to sum-
marize some of the important properties
of fuzzy sets and show how traditional set
theory is a special case of fuzzy set theory.
(Much of this discussion is taken from
Zadeh, 1965 and 1973.) Let X be a uni-
verse of points (or elements, or objects,
or . . .) with a generic element of X de-
noted by %, A fuzzy subset of X, labeled 4,
is characterized by a membership function,
fa, that associates with each element x
in X a real number, f4(x), in the closed
interval from .0 to 1.0, which represents the
grade of membership of x in A. An element
of the fuzzy set 4 thus can be designated
by the ordered pair:

[fA (x): x]r (1)

where f4(x) is the grade of membership of
x in A. Note that the nearer the value of
fa(x) to 1.0, the higher the grade of mem-
bership of ¥ in 4. When 4 is a nonfuzzy
set, its membership function can take on
only values of 1 and 0 according to whether
x does or does not belong to A4, respectively.

As an example, consider the concept lall,
where the membership function specifies
the grade of membership of heights (in
inches) in the set labeled fall.! Representa-
tive values might be: f(60) =.0, f(66) =.2,
7(68) = .7, and f(74) = 1.0. Thus someone
whose height is 5 ft. (152 cm) clearly is not
tall, someone 5 ft. 8 in. (173 cm) is more
tall than not tall, and someone 6 ft. 2 in.
(188 cm) is clearly tall. It is important to
realize that although the membership
function might be defined precisely, it
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does not follow that the concept itself is
precise over the domain.

Membership in a fuzzy set (as in a
nonfuzzy set) is specified by a mapping
from the universe to the set in question,
This mapping may be performed by
enumeration, by a function, by an
algorithm, and the like. Whatever the
method, the result will be that every ele-
ment in X will have associated with it a
number corresponding to its grade of
membership in that fuzzy set. Note that the
relations among the elements (or among
relevant dimensions of the elements) need
not specify a continuum. Where the rele-
vant relations among the elements cannot
be ordered, the mapping onto the fuzzy
subsets would be by enumeration or an
algorithm. However, where at least an
ordinal relationship of elements (along one
or more relevant dimensjons) is implied,
the grade of membership may be deter-
mined by a function, as well as by enumera-
tion or an algorithm. Once this mapping is
specified, the set can be used as a linguistic
variable in fuzzy inferences and algorithms
and can be modified by operations such as
negation and union. '

In both fuzzy and nonfuzzy set theory
the support of the set A is the set of ele-
ments in X for which f4(x) > 0. A (fuzzy
or nonfuzzy) singleton is a set whose sup-
port is a single element in X. Therefore, a
fuzzy set 4 may be specified as the union
(see Equation 10) of its constituent
singletons. Thus 4 may be represented by:

A= /X Ca@), 53 @)

tFor directness of exposition, concepts are as-
sumed to be context constant (but not context
free) here and throughout the:study. In terms of
membership functions, this implies that although
the functions most likely contain more than one
independent variable, the context-relevant variables
have been held constant, For example, the member-
ship function for fall is obviously influenced by the
perspective (i.e., height) of the respondent. Assuming
a constant perspective here in no way limits the
applicability of the fuzzy set approach. (But see
Labov, 1973, for a preliminary investigation of the
interaction of form and context in referential
meaning.)
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- where the integral sign represents the
union of the fuzzy singletons [ fa(x), x].
If the fuzzy set A has finite support (i.e., if
there are a finite number of elements whose
grades of membership are greater than 0),
then Equation 2 may be replaced by the
summation :

A = [fa(xs), 1] + [falxs), x2]

+ ..o+ [falxa), 2], 3)

or

A =3 [falx), ], 4)

=1

in which f, (x;) is the grade of membership
of x; in A. Note that the + sign in Equa-
tion 3 specifies the union of elements (see
Equation 10) and not the algebraic sum.
For example, given that the domain is the
natural numbers, a fuzzy set labeled few
might be defined as:

few = (2,1) + (2,2) + (.8, 3)
+ (1.0, 4) + (1.0, 5)
+ (.8,6) + (.5, 7), (5)

where the support of few is the set of
numbers 1, 2, . . ., 7; that is, according to
the definition, numbers greater than 7
have a grade of membership of .0 in the
set labeled few. Notice that each ordered
pair relates a natural number to the grade
of membership of that number in the
concept. This relationship may be extended
by having the grade of membership itself
be a fuzzy set. For example (from Zadeh,
1973), if the universe, X, is:

X = Tom + Jim + Dick 4+ Bob, (6)
and 4 is the fuzzy set agile, then:
agile = (medium, Tom) + (low, Jim)
+ (low, Dick) 4+ (high, Bob). (7)

Low, in turn, is a fuzzy subset of the uni-
verse of possible grade of membership
values (referring mainly to values near .0),
or:

low = (.5,.2) + (7,.3) + (1.0, 4)
+ (7,.5) + (5,.6). (8
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A crossover point in A is defined as an
element that possesses a grade of member-
ship in 4 of .5. Thus, penguin might be a
crossover point in the set of birds, meaning
that a penguin is as much a bird as it is
not a bird.

Two fuzzy sets, A and B, are equal
(4 = B), if and only if f4(x) = fr(x) for
all x in X, Where the grades of membership
take on values of either 0 or 1, this relation
reduces to the traditional set theory
definition of the equality of two sets. 4
is contained in B (or B entails A, or 4 is a
fuzzy subset of B, i.e., 4 C B) if and only
if fa(e) < fr(x) for all x in X.

Operations on Fuzzy Sets

Negation, logical and algebraic opera-
tions, hedges, and other terms that in-
fluence the representation of linguistic
variables can be considered as labels of
various operations defined on fuzzy sub-
sets of X. The more basic operations will
be reviewed here. For a more complete
overview, see Zadeh (1965, 1973) and
Goguen (1967, 1969).

The complement of a set A is denoted
not A, or A, and is defined as:

not A = /X [1 — falx), 2], 9

that is, as in nonfuzzy set theory, the
operation of complementation corresponds
to negation. It is interesting to note that
Black’s (1937) reciprocal model of nega-
tion can be shown to be isomorphic to this
complement operation,

The union of two fuzzy sets, 4 and B,
is denoted 4 + B, and is defined as:

A+3= /X [F4(6) A fa(x), x], (10)

where

fa(x) A fp(x) = max[fa(x), fa(x)]. (11)

The union of two sets corresponds to the
logical or operation. In fact, in the situation
where the grades of membership take on
values of only 0 and 1, Equation 10 reduces
to the Boolean or operation of set theory.
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TABLE 1
LABELS oF Fuzzy SETs AND THEIR
PREDICTED OPERATIONS
Label Operation

SMALL Sfemant
LARGE largs
NOT SMALL 1 — feman
NOT LARGE 1 — Fiarge
VERY SMALL Samat®
VERY LARGE large
NOT VERY SMALL 1 — famatt
NOT VERY LARGE 1 = fiargé

VERY VERY SMALL Jemati® = foery amati®
VERY VERY LARGE larget = [ uery large
NOT VERY VERY SMALL 1 -
NOT VERY VERY LARGE
EITHER LARGE OR SMALL

small
1~ large4
maX[fzaraa, famall]

The intersection of two fuzzy sets is
denoted 4 () B and is defined as:

ANB = [ [ A fos] 1)

where

Ja@) A fp(x) = min[fa(x), fe(x)] (13)

The intersection corresponds to the logical
connective and, which also reduces to the
Boolean operator for grades of membership
of 0 and 1.

The above descriptions serve to demon-
strate how various linguistic operators can
be defined in terms of fuzzy sets. Zadeh
(1972) and Lakoff (1973) have attempted
to demonstrate that various linguistic
operators (e.g., very, rather) can likewise
be incorporated into the system of fuzzy
logic by being considered as additional
operators upon linguistic variables. For
example, the adverb very appears to act as
an intensifier. Zadeh reasoned that given
a fuzzy set labeled 4, very A should be of
the form:

very A = fx [fa2(x), x].

This formulation was later generalized to:

very A = /X [fao(x), x],

where a > 1.0.

(14)

(15)
Both Lakoff and Zadeh further analyzed
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operations that were concatenations of the
primitive operations. For example, given
the definitions of not (Equation 9) and
very (Equation 14), the operation of #not
very A implies:

not very A =/X [1 — fa2(x), x]. (16)

As part of the axiomatic system of fuzzy
set theory, Zadeh (1968) generalized to
fuzzy set theory the relation between the
probability (P) of an event A, and the
expected value of its membership function,
that is:

P(4) = E(fa). 17

Equation 17 has certain direct psychological
implications. For example, the application
of a term to an element might imply a
grade of membership between .0 and 1.0.
However, the overt judgment of the rela-
tion of the term and element might require
a binary (yes-no) reply. Using Equation 17,
the distribution of binary responses can
be related to the grade of membership of
the element in the fuzzy set labeled by the
term. A technique is thus available for
empirically verifying the predictions of
fuzzy set theory in terms of the implica-
tions for human information processing.

Psychological Implications

Zadeh (1973) proposed. that in dealing
with humanistic systems we apply the
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principle of incompatibility: ‘“As the com-
plexity of a system increases, our ability
to make precise and yet significant state-
ments about its behavior diminishes until
a threshold is reached beyond which preci-
sion and significance (or relevance) become
almost mutually exclusive characteristics’
(p. 28). Given the complexity of the system
that psychologists study, one need not
search far in order to appreciate the ap-
plicability of the above principle to the
study of behavior.

This principle can actually be applied
from two separate viewpoints. The first is
in the description and explanation of be-
havior and in data analytic techniques.
Some work has already been started in
such areas as role theory (Thomason &
Marinos, 1972), pattern classification (Bell-
man, Kalaba, & Zadeh, 1966), and cluster-
ing techniques (Ruspini, 1970; Bezdek,
Note 3). The second view is in describing
and explaining how people interact with
the world around them. While both lines of
research could profit greatly from utilizing
these new quantitative techniques provided
by fuzzy set theory, we have chosen the
latter line of inquiry.

It was shown in the section on vagueness
that people have the ability to comprehend
and manipulate vague concepts. If this
behavior could be described in terms of
fuzzy logic, this new quantitative tech-
nique might motivate the development of
new methods for the modeling of language
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Ficure 3. Membership function for not large.
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comprehension, reasoning, natural problem
solving, and other complex behavioral proc-
esses. To be more specific, the theoretical
position that runs through this line of
research is that people comprehend vague
concepts (i.e., all natural language con-
cepts) as if the concepts are represented as
fuzzy sets. Moreover, people manipulate
vague concepts as ¢f they are processing
according to the rules of fuzzy logic. Several
preliminary studies appear to support this
theoretical position.

EXPERIMENT 1

Since Zadeh (1972) and Lakoff (1973)
both make explicit claims as to the manner
in which fuzzy sets should be transformed,
it was felt that a logical first step would be
to obtain some baseline fuzzy sets and
empirically evaluate the transformations
that occur when these sets are operated
upon by negation and the addition of
hedges.

M ethod

Subjects, Nineteen undergraduates at The Johns
Hopkins University served as paid subjects.

Stimuli. Twelve slides, each containing a black
square on a white background, were used as the
physical stimuli. When projected on the screen, the
squares measured 4, 6, 8, 10, 12, 16, 20, 24, 28, 32,
40, and 48 in. (10.2 cm to 121.9 cm) on one side.

Labels of the fuzzy sets consisted of the adjec-
tives large and small paired with various combina-
tions of not and the intensifier very. In addition, in
order to test the concept of fuzzy union, the phrase
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FIGURE 5. Membership function for not very large.

either large or small was also used. The 13 labels are
shown in Table 1, along with the predicted trans-
formations from Zadeh (1973).

Procedure. Subjects were run in one group. Each
received an answer sheet containing the 13 phrases
in one of 10 random orders. Below each phrase were
12 spaces. Subjects were instructed to look at the
first phrase. They were told that they would be
shown 12 squares in a random order. They were to
simply look at each square and decide whether the
phrase applied to it. If it was appropriate, they
were to enter yes in the appropriate space; if it
was not appropriate, they were to enter #o. This
procedure was repeated for each phrase, with a
different random order of squares in each block.
Slides were exposed for 1 sec. Subjects were given
additionally 5 sec in which to respond. Before
the start of the experiment the 12 squares were
shown in ascending order to insure that everyone
was operating within approximately the same
context.

After every block of 12 slides, subjects were given
a 30-sec break. After all 13 blocks, they were given
an additional 5-min. rest, and the process then was
repeated with different randomizations, Thus every
subject responded twice to every combination of
square and phrase. The entire session lasted 50 min.

Results

Since Zadeh (1968) had equated the
probability of a fuzzy event with the ex-
pected grade of membership of the event,
the proportion of yes responses for a
particular square and phrase was inter-
preted as the grade of membership for that
square in the fuzzy set labeled by the
phrase. (The data were scaled by the
method of successive intervals [Diederich,
Messick, & Tucker, 1957] to obtain a
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psychological scale for the square size.
Since the use of this scale in no way changed
any of the results, the data are reported
simply in terms of the ordinal square size.)
v Figures 2 and 3 show the membership
funictions for unot small and not large,
respectively. In each graph the negative
phrase is plotted with the complement of
the corresponding affirmative phrase. In
these figures, as in all remaining figures,
the ordinate corresponds to the grade of
membership (truth value), while the ab-
scissa corresponds to the ordinal square
size. Figures 4 and 5 relate »not very small to
the complement of very small and not very
large to the complement of very large,
respectively. Figures 6 and 7 show the cor-
responding relations for very very small and
very very large, respectively. The fact that
the graphs indicate a reasonably good fit,
and the fact that the average root mean
square error over all positive-negative
pairs was less than .07 supports the fuzzy
set notion of negation as being the comple-
ment of the positive set.?

2 Note that these results can likewise be predicted
by a Thurstonian model wheré the concept is as-
sumed to be constant and the evaluation of the
square size is the variable component. Fuzzy set
theory assumes that the response variability is
mainly due to the vagueness of the verbal concept:
The perception of square size is relatively constant.
Differences at this point are more a matter of
theoretical perspective than of quantitative pre-
diction.
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Figure 8 is a graph of not large and small.
Although the two functions are mono-
tonically decreasing, they do not represent
the same concept. Nof large appears to
extend the concept small to include the
midrange of the continuum.

The effect of the intensifier very on the
concepts small and large are plotted in
Figures 9 and 10, respectively. Note that
the relation between large and very large,
very large and very very large, and so on
corresponds to the definition of entailment
for fuzzy sets. Within each triplet (e.g.,
small, very small, very very small) the slopes
of the functions appear approximately
equal. (This was confirmed by the succes-
sive intervals analysis.) The equality of the
slopes implies that the influence of wery
did not appear to reduce the vagueness of
the concept. Now if Zadeh’s (1972, 1973)
hypothesis concerning the functioning of
very as a power function is accurate, the
slope of the function should increase as the
intensifiers are concatenated. This does not
seem to be the case.

Various classes of operators were tried
in order to find a reasonable mapping
function from a concept to the concept
modified by very. Although a reasonable fit
was obtained with a power function, it was
felt that a more straightforward explana-
tion was appropriate. In examining the
plots of the membership functions it ap-
peared that the addition of the intensifier
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FIGURE 7. Membership function for
not very very large.
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very served to simply translate the func-
tion along the abscissa.® Support for this
finding comes from the work of Cliff (1959),
who found that adverbs tended to function
as multiplicative constants. (Recall that
Cliff was working under the assumption
that the meaning of an adjective could be
characterized as a point on a scale: The
adverb functioned to shift the point along
the scale.) A least squares method was used
to obtain the best shift for very and very
very. However, for ease of exposition, it is
sufficient to describe the translation for
very as two ordinal scale units and very very
as an additional ordinal scale unit toward
the extreme of the scale.t The results of
this shifting operation are shown in Figures
11 and 12,

Figure 13 is a plot of the phrase either
large or small and the operation of fuzzy
union on the concepts large and small.
While there is a definite similarity in the
shape of the two functions, the discrep-
ancies are more than minimal. The plot of
the phrase is depressed in relation to the

¥ Root mean square errors overall were .074, .214,
and .061 for the best-fitting power, exponential,
and translation functions, respectively,

+From the successive intervals scaling of the
psychological square size, the ratio of the best
translation to the mean intersquare distance was
actually 1.81 and 1.15 for very and very very, re-
spectively.



& f SMALL
*-—< f VERY SMALL

—¢ f VERY VERY SMALL

GRADE OF MEMBERSHIP
o
T

0.0

e
7
SQUARE SIZE

F1GURE 9. The effect of zery on the concept small.

fuzzy set theoretic prediction. Some of the
discrepancy is probably due to the difficulty
that some subjects reported in evaluating
this concept: the result being that the data
contains possible inverted responses.
Overall, several conclusions are clear.
Concepts defined by extension can be
considered as fuzzy sets, and people tend
to interpret these concepts and their
variations in terms of operations on fuzzy
sets. Negation can be characterized by the
complement of the positive set. The effect
of the intensifier very can also be inter-
preted as an operation on a fuzzy set, al-
though its empirical form deviates from the
predicted function. Operators like nof and
very can be concatenated with themselves
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and each other, with predictable results.

It would have been nicer if Zadeh’s
(1972, 1973) hypothesis of very operating
as a power function of the grade of
membership was applicable. Although such
a finding would have supported the
generality of the operation of very, the
form of the operation .is an empirical
question. Very defined as a translation
operation is obviously class dependent:
It can certainly be generalized to other
relative adjectives (e.g., :good, short, hot).
How such an intensifier would opérate on
the class of absolute adjectives (e.g., he is
very British, this is very red) remains to
be determined. Intuitively, it appears that
the meaning of very in very large is qualita-~
tively different from very in very British.
The former implies an extreme of a con-
tinuum; the latter implies a greater
emphasis on characteristic features (Lak-
off, 1973).

The most important point of Experiment
1 is that no longer is the variability about
the mean of a distribution considered to
be strictly the result of noise in the system
or the uncontrollable influence of ex-
traneous variables. The variability has a
specific interpretation in terms of the grade
of membership of the element in the fuzzy
set denoted by the concept label.

EXPERIMENT 2

Experiment 1 demonstrated that the
composite responses of a group of subjects
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FIGURE 12, Very very as a translation operation.

could be considered as reflecting operations
on fuzzy sets. The argument would be
more convincing if it could be shown that
individual subjects display similar be-
havior. Experiment 2 therefore can be con-
sidered a replication of Experiment 1
with repetitions across days for a single
subject rather than across subjects for a
single presentation.

Method

Subjects. Four students at The Johns Hopkins
University, who had not been in Experiment 1,
served as paid subjects.

Procedure. The experimental procedure was
similar to Experiment 1, Exposure time for the slides
remained at 1 sec; however, the intertrial intervals
were under subject control. In order to obtain more
information from each trial, confidence ratings were
also used. Subjects were instructed to respond vyes or
no according to whether the square viewed was
appropriate for the phrase. After this response was
recorded, subjects rated how confident they were
in their decision on a 5-point scale, where 1 was
interpreted as purely guessing and 5 as absolutely
certain,

In a typical session, which lasted less than 1 hr.,
a subject judged all combinations of the 12 squares
and 13 phrases twice. Each subject participated in
five such sessions over 5 days.

Results

The binary decisions and the confidence
ratings were integrated into a single scale
over the closed interval .0 to 1.0. For ex-
ample, a #no judgment with a confidence
rating of five was assigned .0, while a yes
response with a similar confidence rating
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F1cure 13, Membership function for
either large or small.

was assigned 1.0.5 Although there is no
clear theoretical justification for this map-
ping, the resulting scale seemed to reflect
the important conceptual ideas implicit in
fuzzy set theory. The extremes of definite
membership and nonmembership cor-
respond to judgments that were rated as
highly confident. Likewise, judgments rated

§ More formally, if d is the binary applicability
decision (1 = yes, —1 = no) and ¢ is the value on
the confidence scale (1 <r < 5), then the grade
of membership is defined as:

Grade = 5. + d(ILO)
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FiGure 14. Membership functions from Subject 1
and the group data.
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as purely guessing corresponded to the
crossover points in a fuzzy set.®

The results of three of the four subjects
resembled, with minor differences, the
results of the group experiment (Experi-
ment 1). Moreover, since there were no
important differences among Subjects 1-3,
only Subject 1 will be discussed. Subject 4
was quite different and will be discussed
separately.

The results of Subject 1 are shown in
Figures 14-20. Figure 14 compares the
membership functions for large and small
with similar functions obtained from the
group experiment (Experiment 1). Al-
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Ficure 16. Membership functions from Subject 1
for not very large and not very small.
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though the functions for large appear very
similar, the concept small is more exten-
sive for Subject 1 than for the group.
Information of this type might be useful in
studies on individual differences in com-
prehension, but is irrelevant for the theory
being considered. The hypothesis being
tested is that the operations on fuzzy sets
should remain constant, independent of the
basic membership functions.

Figures 15, 16, and 17 compare the
negative concept to the complement of the
corresponding positive concept. As with
Experiment 1, the functions are quite
similar, implying that the‘effect of negating
a concept is to replace the grades of
membership with their complements.

Plots of very as a shifting operation are
shown in Figures 18 and 19. As with the
group data, the goodness of fit indicates
that the translation operation is a tenable
description of the effect of modifying a
concept by wery. Finally, Figure 20 shows
that the membership function for either
large or small shows a slight depression in
relation to the fuzzy union of large and
small, as was found in Experiment 1.

6 Inherent in this transformation is the assump-
tion that equal confidence intervals reflect equal
differential grades of membership. The comparison
of the concept large for the group and for the
individual subject, here Subject 1 (see Figure 14),
tends to support this assumption.
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(Data are from Subject 1.)

Of the 3 individual subjects and the 19
group subjects tested, all responded in a
similar manner. Their judgments all re-
flected fuzzy logical operations where the
concept appeared to dichotomize the con-
tinuum (in a fuzzy manner) into a region
of inclusion and a region of exclusion. Al-
though these findings do reflect the as-
sumptions of fuzzy set theory—{rom the
perspective of linguistic processing—some
- of the results are rather anomalous. Ac-
cording to Bolinger (1972), the use of
litotes such as %ot very does not imply the
complement of the continuum as Figures 4
and 5 show, but only some range near the
middle of the continuum: For example,
to say that someone is wot very tall is
typically interpreted as meaning that he
is rather short or sort of short. Subject 4
made judgments drastically different from
the other subjects and seemed to be re-
sponding according to this more ‘‘idio-
matic” interpretation of the phrases.

Figures 21 and 22 show the various
positive membership functions as per-
ceived by Subject 4. Whereas the other
subjects perceived the operation of very
on the concept small as defining successively
smaller fuzzy subsets, Subject 4 interpreted
the phrases as (fuzzy) overlapping cate-
gories. A square that is judged to have a
maximum grade of membership in the set
very very small is considered to be a marginal
(f = .56) member of the set small. From
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FIGURE 19. Very wery as a translation operation.
(Data are from Subject 1.)

the shape of the membership functions in
Figures 21 and 22 it can be argued that
the concept of strict entailment was not
functioning for this subject. The fact that
a square is judged to be very very large
does not entail that it is also large.

The membership functions for not small
and not large are presented in Figures 23
and 24, respectively, along with large and
smell. 1t appears that the two negative
terms are rather general concepts repre-
senting the middle region of the contextual
range. Functions for not very small and not
very large are plotted in Figures 25 and 26,
respectively. The functions seem to indicate
that for this one subject the term wnof
operates upon the intensifier very rather
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Fi1GUure 21. Membership functions containing
small for Subject 4.

than on the entire concept. More explicitly,
the original empirical formulation for not
very small is:

fnot very small(x) =1- fvery small(x) (18)
=1 = foar(x +d), (19)

where d is the amount of translation on the
abscissa. Over at least a portion of the
domain, a tentative hypothesis for the be-
havior of Subject 4 might be:

Srot very ymall (x) = ] very small (x — 2d)

= fsmall(x - d):

(20)

that is, the function of nof operates on the
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F1Gure 22. Membership functions containing large
for Subject 4.
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Ficure 23. Membership function from Subject 4
for not small,

function very by translating the function
about the base membership function. This
formulation is extremely speculative, and
the data to support the operation comes
from only one subject out of 23. Neverthe-
less, it must be recognized that the em-
pirical functions produced by this one
subject, far from being random, appear to
obey lawful relationships,

EXPERIMENT 3

The question remained as to why 22
subjects would respond in a (fuzzy)
logically predictable manner, and only one
subject respond in a manner that somewhat
reflected a linguistic interpretation. Per-
haps the demands of Experiment 2 were
such as to force Subject 4 into responding
in the more logical manner. To test this
hypothesis Experiment 3 was performed;
the context was varied in the hope that a
more linguistic interpretation would result.

Method

Subfects. Fourteen undergraduates at The Johns
Hopkins University, not involved in the previous
experiments, participated as paid subjects.

Stimuli. The 12 squares used in Experiments 1
and 2 served as the physical stimuli. The terms were
composed of the adjectives large and smalil, which
appeared unmodified and in combination with #ot,
very, and not very. In addition, the hedge sort of
was included in order to evaluate the relation be-
tween nof very and this relaxive adverb.
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FiGUre 24. Membership function from Subject 4
for not large.

The terms were integrated into sentences of the
form, “This is sort of small,” which were then re-
corded in a random order onto one track of a stereo
magnetic tape. The hope was that the auditory
presentation of the sentences might be reflected in a
more natural language interpretation. Two identical
tapes were made. On Tape 1 the phrases not very
large and not very small received strong emphasis
on the word nof. On Tape 2 the word very was
emphasized, The remaining sentences were dubbed
from the same master tape and thus were identical,
On the second track of each stereotape synchroniza-
tion information to automatically advance the slide
projector was recorded.

Procedure. Subjects were randomly assigned to
one of two treatment groups corresponding to which
audiotape they would hear. The procedure for
each group was identical. On each trial a slide
would be projected. At the same instant that the
slide was exposed, a sentence would be heard. The
subject was to simply look at the slide and decide
whether the sentence he was hearing was appro-
priate with reference to the square on the slide,
Subjects circled the appropriate response (yes or
no) on an answer sheet and indicated on a rating
scale from 1 to 3 their degree of confidence in their
decision. After 10 stimulus pairs there was a 15-
sec pause, and after every 60 trials a 2-min. rest
period. Each subject saw all combinations of the 12
squares and 10 sentences two times in a completely
randomized order. Before they began, subjects
were shown the entire range of slides in ascending
order and the range of sentences, so they would all
be operating in approximately the same context,
The entire session lasted less than 45 min.

Results

The findings of Experiment 3 demon-
strate how robust the various concepts are
under differing experimental conditions..
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FIGure 25. Membership function from Subject 4
for not very small,

Figures 27 and 28 show, respectively, the
correspondenice between small and large
from Experiments 1 and 3. It is apparent
that neither the change in modality
(visual/auditory), emphasis, context
(phrases/sentences), nor design (blocked/
completely randomized) had any influence
on the results. The functions for the other
concepts correspond in a similar manner.
The . only other result of interest is the
membership functions for sor¢ of small and
sort of large. These functions are plotted
in Figures 29 and 30, respectively, and
compare favorably with the plots for no?
very small and not very large for Subject 4.
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Ficure 26. Membership function from Subject 4
for not very large,
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Ficure 27. Membership functions for small from
Experiment 1 (visual stimuli) and from Experiment
3 (auditory stimuli),

EXPERIMENT 4

In Experiments 1-3, having to make
judgments on more than one phrase may
have led subjects to treat concepts and
modifiers in the observed ‘logically” pre-
dictable manner. This may result from
subjects redefining the phrases in relation
to each other. That is, the subjects may
adopt a response strategy for specific
phrases that is influenced by the other
phrases used in the experiment. So, for
example, the type of response to wnof very
small may be a function of how the subject
‘responded to very small. To overcome this
possible contextual effect, an experiment
was performed where each subject had to
judge only a single phrase. It was felt that
in this case, subjects might give a linguistic
as opposed to logical interpretation to the
phrases.

Method

Subjects. Forty-five undergraduates at The Johns
Hopkins University, who had not participated in
the earlier experiments, served as unpaid subjects.
There were 10, 11, 12 and 13 subjects in the large,
very large, not very large, and sort of large conditions,
respectively.

Stimuli. Twelve black squares, proportional in
size to the squares used in Experiments 1-3, were
mounted on a white background. The mounted
squares were fastened in ascending order (left to
right) to a blackboard in the front of a classroom.
Below each square was a number corresponding to
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the ordinal ranking. Unlike the preceding experi-
ments, only four phrases were used: large, very
large, not very large, and sort of large.

Procedure. Subjects were given a sheet of paper
containing a single phrase and were instructed to
look at the 12 squares and write down the identify-
ing number or numbers of squares that might
correctly be characterized by the phrase written
on their sheet. Experiment 4 lasted approximately
2 min.

Results and Discussion

Figure 31 shows the membership func-
tions for the four phrases. Two results are
important. First, there is a small but pre-
dictable decrease in the grade of member-
ship of the largest square for the concept
large. This result is consistent with a
linguistic interpretation of large, where
large is not strictly entailed by very large.
Second, the phrase not very large is clearly
not the complement of very large. Rather
as predicted by the linguistic interpretation,
it seems to be functioning as sort of small
(compare Figures 30 and 31). What is
important here is simply that not very large
is not the complement of very large. These
two results together suggest that subjects
will tend to give linguisticinterpretations to
the phrases if experimentally induced
context effects are eliminated. The question
arises whether these results are inconsistent
with the formalism of fuzzy set theory, We
think not. At worst they will complicate
the particular characterization of various
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Ficure 28. Membership functions for large from
Experiment 1 (visual stimuli) and from Experiment
3 (auditory stimuli).
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operators but not invalidate the principle
claim that intensifiers and hedges can be
described as operators on fuzzy sets. In fact,
recall that we did give a formal, though
tentative, formulation of the operations
underlying the use of adverbs for the sub-
ject (Subject 4) who used a Ulnguistic
interpretation in judging the application of
phrases to square size. The actual form that
the operators and concepts take is an
empirical issue to be determined by experi-
mentation. Once we have determined the
forms they take we can then proceed to
see whether we can give them an inter-
pretation within the framework of fuzzy
set theory. This is essentially the procedure
followed in the ‘‘odd” case of Subject 4
in Experiment 2,

GENERAL DISCUSSION

The most important conclusion to be
drawn from our results on the effects of
operators %ot and very on the concepts
smaell and large is that natural language
concepts can be described more completely
and manipulated more precisely using the
framework of fuzzy set theory. A further,
not uninteresting, finding was that con-
cepts and operators can be interpreted in
two different ways: what we have called
the linguistic and logical interpretations.
This latter finding is independent of any
considerations relating to the treatment of
concepts as fuzzy sets. It, however, does
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Ficure 29. Membership function for sort of small.
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Ficure 30. Membership function for sort of large.

have important consequences for general
psycholinguistic theory. Thus, it raises a
cautionary note to be heeded by those who
would treat certain lexical items as if
they were strict logical operators. The
results we have reported show that in
certain natural language settings entail-
ment does not strictly hold (e.g., large is
not strictly entailed by very large) and that
certain combinations of operators will
assume an idiomatic sense very different
from that predicted by a simple linear
combination of the lexical items con-
stituting the phrase (e.g., not very large).

As pointed out in the introduction, the
implicit claim underlying our work is that
natural language concepts are intrinsically
vague, a view shared by an increasingly
large number of psychologists, linguists,
and philosophers. The treatment of natural
language concepts as vague has important
implications for semantic theory. The
major implication is that the meaning of a
term could be specified as a fuzzy set of
meaning components. That is, a specific
meaning component need not be neces-
sarily either a member or a nonmember of
the set of features that define the meaning
of a term. All that is required in this view
is that a meaning component have a non-
zero degree of membership in the set. This
approach, then, avoids a problem that has
been the attention of a number of recently
published reports where increasing em-
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FIGUrE 31. Membership functions resulting from
the presentation of a single phrase to each subject
(Experiment 4),

phasis has been placed on the problem of
how to exactly determine what aspects of
the meaning of a term are necessary and
sufficient to characterize that term (Lehrer,
1970; Slote, 1966). The thrust of a number
of empirical reports is that the traditional
component approach to. meaning (e.g.,
Katz & Fodor, 1963) incorrectly assumes
that a specific component can be said,
without any uncertainty, to be necessary
for the definition of a term (Caramazza,
Grober, & Zurif, in press; Garvey, Cara-
mazza, & Yates, 1975; Lehrer, 1970;
Rosch, 1973 ; Smith, Shoben, & Rips, 1974),
More generally, the traditional componen-
tial approach is criticized for treating all
components as contributing equally to the
definition of a term. The alternative pro-
posal emerging from these critical reports

is that various components of meaning are .

differentially important to the definition of
a term and, in addition, that no subset of
these components can conclusively be said
to be necessary and sufficient to define a
term : That is, the semantic structure of a
term itself is ill-defined, or vague. Though
this latter approach may seem to be un-
necessarily complicated, it allows for more
natural explanations of important classes
of semantic phenomena. Thus, for ex-
ample, Labov (1973) has shown that
attempts to give well-defined character-
izations in terms of traditional com-
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ponential analysis of the semantic struc-
ture of a common concept:such as cup are
inadequate. Labov obtained data on the
consistency of naming wvarious cuplike
objects that support a theory in which
various features are differentially weighted
as necessary to define the term. The
results Labov reported have been replicated
in two independent studies with children
as subjects (Anderson, 1975; DeVos &
Caramazza, Note 4). In the study by
DeVos and Caramazza (Note 4), it was
shown that perceptual features of objects
and functionally determined contexts inter-
act in fairly specific ways to determine the
label a child will assign to an object. The
implication of this latter study is that from
very early in life a child forms concepts
that are vague (fuzzy), and contextual cues
operate on perceptual features to determine
the relative weighting the features are
assigned in choosing a label (name) for
the object. It is unclear how a traditional
feature theory of meaning would handle
such findings without recourse to complex
ad hoc principles. ‘

The importance of vagueness (fuzziness)
as a basic concept in semantic theory can
be seen by considering yet another semantic
phenomenon: polysemy. Lexicographers
have long recognized the fluidity of poly-
semy: No clear boundary distinguishes
polysemy from homonymy. However, tradi-
tional feature theory requires that a
definite demarcation hold between poly-
semous and homonymous senses—es-
sentially marked by the presence of a
specific feature. In fact, the defining
property of polysemous words is that the
senses that comprise a word share a com-
mon meaning core while at the same time
differ sufficiently to be recognized as
distinct from each other. In a recent in-
vestigation of polysemous words, it was
shown, however, that the grade of member-
ship of various senses in a general word
concept vary considerably (Caramazza et
al., in press). This finding is difficult to
interpret within traditional feature theories,
since they do not normally allow for fea-
tures to be only partially applicable. This
same finding can be easily interpreted
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within a theory that allows ‘‘vague” core
meanings, where specific senses differ in
degrees of membership to that core. Inci-
dentally, it should be pointed out that
Katz and Bever (Note 5) have criticized
theories that postulate graded membership
of instances in categories for confusing
performance variability with inherent vari-
ability in concepts. They also make the
blanket assertion that theories of this sort
are based on empiricist principles. While
not necessarily disagreeing with their
characterization of Rosch’s (1973) work,
in particular, as having an empiricist flair,
we find their wholesale labeling as ‘‘em-
piricist’ theories that propose vague con-
cepts to be rather naive. That is, there is
no a priori reason to suggest that a rational-
ist theory necessarily excludes vague
concepts.

To conclude, we are proposing that
natural language concepts be considered as
inherently vague and, specifically, as fuzzy
sets of meaning components. We are also
proposing that language operators—nega-
tive markers, adverbs, and adjectives—
be considered as operators on fuzzy sets.
Though the research we have reported in
this article deals with a very narrow issue,
modifying concepts, it does relate nonethe-
less in a direct way to semantic theory.
Specifically, we have tried to give theo-
retical and empirical justification for the
use of a formal system that can handle
vagueness. The formal treatment of vague-
_ness is an important and necessary (in our
view) step toward a more comprehensive
handling of natural language phenomena
and the communication of vague in-
formation.
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